ACB-3000

Redundancy Static Transfer Switch

GENERAL FEATURES:

Sine wave output voltage by-pass for dual input lines.

Switching period less than $<2 \mathrm{~ms}$
Two models for 120 V ac and 230 V ac, 50 Hz .
High current converter up to 13A or 21 A, depending on the model.
Designed according to EN50155:2017
Fire and smoke: EN45545-2:2013
+A1:2015
Safety according to norm IEC 62368-1
CAN BUS to control status

MODEL	9431			9576*		
Premium models ODS-XXXX	750-230	1500-230	3000-230	750-120	1500-120	3000-120
DUAL AC INPUTS						
Nominal AC input voltage	230 Vac			120 Vac		
Minimum/Maximum AC input voltage	$\pm 10 \%$ of nominal					
Efficiency	>99\%					
OUTPUT						
Output voltage	230 Vac (same as input)			120 Vac (same as input)		
Voltage tolerance	$\leq \pm 10 \%$ of nominal					
Load regulation	-2 V					
Line regulation	$\mathrm{V}_{\text {input }}$ - 2 V					
Nominal AC output current	13 Arms			$21 \mathrm{~A}_{\text {rms }}$		
Maximum peak input current	22 Apk			32 Apk		
DC AUXILIAR (not necessary)						
Nominal DC input voltage	$15-139 \mathrm{~V}_{\mathrm{dc}}$					
ENVIRONMENTAL						
Storage temperature	$-40 \ldots 85^{\circ} \mathrm{C}$					
Operating temperature: Full load	-40 ... $55^{\circ} \mathrm{C}$ (EN50155 OT2)					
Operating temperature: 70 \% load	-40 ... $70{ }^{\circ} \mathrm{C}$ (EN50155 OT4)					
Operating temperature: 50 \% load	-40 ... $85^{\circ} \mathrm{C}$ (EN50155 OT6)					
Cooling	Natural convection					
Operating altitude	2000 m at full load, 2500 m at 90% of load					
Maximum Relative humidity	95 \% with no condensation					
Shock and vibration	EN61373:2011 Category 1 class B body mounted					
Service life	> 20 years					
MTBF	$>1000000 \mathrm{~h} @ 40{ }^{\circ} \mathrm{C}$ according to IEC61709					
EMC						
Emission	EN50121-4					
Immunity	EN50121-4					
SAFETY						
Safety according to norm	IEC 62368-1					
Dielectric strength Input-Output / Earth	1500 Vac 50 Hz					
Dielectric strength DC input / Earth	1500 Vac 50 Hz					
Protection Degree	IP40					
Pollution degree	PD2					
Overvoltage category	OV2					
Fire and smoke	EN45545-2:2013 +A1:2015					
MECHANICAL						
Dimensions	$78,34 \times 60 \times 200 \mathrm{~mm}$					
Weight	1,2 kg					
CONTROL						
Switching response in case of failure	< 2 ms					
Input Line 1 OK	Green					
Input line 2 OK	Green					
Output OK	Green					
Failure of the system	Red					
Status	Can Bus					
PROTECTIONS						
Against output overloads and short-circuits	Current limiting by fuse and active protection of overcurrent with push-in button for system restart after 3 overcurrent situations.					
Failure in line 1	Solid state relay 1 closed if line 1 is OK and opened if it isn 't					
Failure in line 2	Solid state relay 2 closed if line 2 is OK and opened if it isn 't					
Failure in system	Solid state relay 3 closed if all the system is OK and opened if it isn 't					

[^0]
BLOCKS DIAGRAM

CONNECTIONS

Note 1: maximum spring terminals cross section cable $6 \mathrm{~mm}^{2}$
Note 2: J1 recommended male connector Phoenix Contact 1790124
Note 3: maximum nut torque in M4 earth connection 1.9 Nm

POWER DERATING vs AMBIENT TEMP.

DESCRIPTION

The ACB-3000 is a current transfer switch converter which has 2 main AC voltage input lines and is capable of switch between them and give an output in case of failure in one of their input lines.

Supplied by the Premium families ODS-750, ODS-1500 and ODS-3000 the unit is designed to give extra protection against failure in one of the input lines for mainly auxiliary loads in Railways.

In case of failure the equipment has control LEDs and solidstate relays which will change their state.

The device is protected against overload and short-circuits by means of a current limiting circuit. After a detection of overcurrent, the failure LED will be on and there will be no output. When 3 overcurrent situations have been produced, the ACB will stop supplying the output until the 'Reset' button is pressed.

In normal operation, the input that is supplying the output will have its LED blinking. If the other input is correctly supplied, its LED will be on. If the output is active, the LED will blink indicating correct function.

	Function
$\mathbf{J 8}$ (Pin 1)	Neutral 1 Input
$\mathbf{J 8}$ (Pin 2)	Line 1 input
$\mathbf{J 7}$ (Pin 1)	Line 2 input (priority)
$\mathbf{J 7}$ (Pin 2)	Neutral 2 input (priority)
$\mathbf{J 6}$ (Pin 1)	Line output
$\mathbf{J 6}$ (Pin 2)	Neutral output
Push-in button	Restart of the system in case of 3 overcurrent situation. $\mathbf{J 1 (P i n ~ 7 , 8) ~}$
Relay of failure in system	
$\mathbf{J 1 (P i n ~ 5 , 6) ~}$	Relay of failure in line 2
$\mathbf{J 1 (P i n ~ 4 , 3) ~}$	Relay of failure in line 1
$\mathbf{J 1 (P i n ~ 2 , 1) ~}$	+Vbat, -Vbat auxiliar
$\mathbf{J 4 (S u b D 9)}$	CAN-BUS communications

CAN Communication port

It is possible to monitor the unit via DSUB9 connector with CAN protocol.

Protocol configuration: By default, CANopen devices start without CANopen Node-ID (0xFF) and baudrate of 250 kbit. Node ID must be set to communicate with the device.

		Standarized Device Profile Area			
Index	SubIndex	Name	Type	Attribute	Notes
6001	00	Active line	UINT8	ro	
6002	00	State	UINT8	ro	
6003	00	Number of failures	UINT8	ro	
6100	01	Input voltage RMS 1	UINT32	ro	
6100	02	Input voltage RMS	UINT32	ro	
6101	01	Input current RMS 1	UINT32	ro	
6101	02	Input current RMS	UINT32	ro	
6102	01	Input frequency 1	UINT32	ro	
6102	02	Input frequency 2	UINT32	ro	
6103	01	Input state 1	UINT8	ro	
6103	02	Input state 2	UINT8	ro	
6200	00	Output voltage RMS	UINT32	ro	
6201	00	Output current RMS	UINT32	ro	
6202	00	Output freq	UINT32	ro	
6300	00	Number of startups	UINT32	ro	
6301	00	Number of hours ON	UINT32	ro	

Communication Profile Area					
Index	Subindex	Name	Type	Attribute	Notes
1001	00	Error register	UINT8	ro	
1003	00	Number of errors	DYNAMIC_TABLE	rw	
1003	01	Error messages	DYNAMIC_TABLE	ro	
1008	00	Manufacturer device name	ARRAY	ro	
100 A	00	Manufacturer software version	ARRAY	ro	
1017	00	Producer Heartbeat time	UINT16	rw	
1029	00	Error behavior object	UINT8	-	
1018	01	vendor_ID	UINT32	ro	
1018	02	Product Code	UINT32	ro	
1018	03	Revision Number	UINT32	ro	
1018	04	Serial Number	UINT32	ro	

DIMENSIONS

Lateral fixing holes $6 \times \mathrm{M} 3$ (screw torque < 1.6 Nm). Maximum screw deep 5 mm .
Earth screw M4 (nut torque $<2.5 \mathrm{Nm}$)

ACCESSORIES (pending)

(6) IK EU, UKCA DECLARATION OF CONFORMITY

The undersigned, representing the following:
Manufacturer: PREMIUM, S. A.,
Address:
C/ Dolors Aleu 19-21, 08908 L'Hospitalet de Llobregat, SPAIN
herewith declares that the product:
$\begin{array}{ll}\text { Type: } & \text { AC/AC bypass } \\ \text { Model: } & \text { ACB-3000-9431-9576 }\end{array}$
is in conformity with the provisions of the following EU directive(s):

2014/35/EU	Low voltage / The electrical equipment (safety) regulations
SI 2016 No 1101	
2014/30/EU EMC / Electromagnetic compatibility regulations SI 2016 No 1091 RoHS / Restriction of the use of certain hazardous substances in electrical and 2015/863/EU electronic equipment	
SI 2012 No. 3032	

and that standards and/or technical specifications referenced below have been applied:

EN 60950-1: 2005 Safety. Information technology equipment
EN 62368-1: 2014 Safety. Audio/video, information and communication technology equipment
EN 61000-6-3: 2007 Generic emission standard
EN 61000-6-2: 2005 Generic immunity standard
EN 50155: 2017*
Railway applications. Electronic equipment used on rolling stock material
EN 50121-3-2: 2016* Railway applications. EMC Rolling stock equipment

* See annexe

CE marking year: 2020; UKCA marking year: 2021

Notes:

For the fulfillment of this declaration the product must be used only for the aim that has been conceived, considering the limitations established in the instructions manual or datasheet.

L'Hospitalet de Llobregat, 31-05-2021

PREMIUM S.A. is an ISO9001and ISO14001 certified company by Bureau Veritas

Miguel Angel Fernandez
Chief Research \& Development Officer

[^0]: *Design available on request and subject to MOQ.

